EL ÁRBOL, MÁS QUE SOMBRA

Hurtado, P. 2004. Informativo Rural, E.E.A. INTA San Luis. <u>www.produccion-animal.com.ar</u>

Volver a: Manejo silvopastoril

INTRODUCCIÓN

Las especies leñosas, salvo cuando implantadas o preservadas del desmonte con un objetivo específico, a menudo son consideradas un estorbo por el productor, porque ocupan espacio, demandan tareas e inversiones, y compiten con otras especies vegetales por agua y nutrientes. En cambio, son menos reconocidas las funciones que desempeñan en la protección de suelos frágiles, con escasa retención de humedad y bajo contenido de materia orgánica, tales como los de San Luis. Contribuyen además a la productividad y diversificación del sistema mediante la provisión de leña, madera, forraje, frutos, y sirven para el refugio y conservación de la vida silvestre.

LOS APORTES DEL ÁRBOL

Los árboles son reguladores del microclima. Su ausencia determina la formación de un microclima de mayor aridez, balance hídrico negativo debido a temperaturas más altas, y menor aporte de materia orgánica al suelo. En un cultivo, este microclima es insignificante.

Figura 1.- El árbol desempeña múltiples funciones en el ecosistema.

Temperaturas elevadas y escasa humedad ambiental, así como vientos de alta velocidad y frecuencia, activan la transpiración y evaporación, incrementando el consumo de agua por los vegetales, la pérdida de humedad del suelo, y disminuyendo la cobertura del mismo.

Es fácilmente observable a campo el efecto positivo del estrato arbóreo sobre el pastizal. Una buena condición herbácea suele estar asociada con cierto grado de cobertura de leñosas. En cambio, las condiciones regulares y pobres ocurren generalmente donde el estrato arbóreo ha sido eliminado o modificado por la alteración del microambiente que aquel generaba (Anderson, 1980).

La copa de los árboles y la cobertura del suelo reducen la temperatura ambiental y la evapotranspiración, mantienen la humedad relativa, y limitan la acción erosiva de la lluvia al reducir la fuerza de las gotas que, en suelos descubiertos y de baja estabilidad estructural, rompen agregados y desprenden partículas, que pueden ser transportadas por el agua y/o el viento, y producen compactación.

Si debajo del estrato de árboles existen un segundo y tercer estratos (arbustivo y herbáceo), tenemos un sistema ideal de protección del suelo contra la erosión. La intercepción puede variar desde 0 a 94 % e incluso llegar a 100 % cuando la intensidad pluvial es muy baja y el índice de área foliar es grande, habiéndose estimado en 28 % para una comunidad de bosque de caldén situada al S de Villa Mercedes (Losada *et al.*, 1983).

Las raíces de los árboles mejoran la estructura del suelo, haciéndolo más permeable, y facilitan la infiltración del agua, disminuyendo la escorrentía superficial y el grado de erosión.

Los nutrientes quedan más accesibles para las plantas cuando los árboles los extraen desde profundidades a las que no acceden los cultivos y, una vez transformados en materia asimilable, los retornan al suelo a través de hojas, ramas, frutos, etc. El retorno anual de residuos orgánicos al suelo en un bosque varía entre 1,5 y 4 t C ha-1 mientras que en un campo cultivado no supera las 2 t C ha-1 (Porta *et al.*, 1994).

La regulación de temperatura y humedad también es fundamental para los microorganismos responsables de transformar materia orgánica en materiales asimilables por las plantas; su población y actividad disminuyen con temperaturas extremas y con déficit o exceso de humedad.

La capa de desechos forestales no sólo es importante por contribuir al reciclado de nutrientes, sino que es la forma más eficiente de incorporar materia orgánica y controlar erosión. La deforestación interrumpe este ciclo: la materia orgánica es destruida por el calor, los microorganismos desaparecen y los nutrientes se agotan, perdiendo fertilidad el suelo.

La mayoría de los cultivos soporta cierto grado de sombra, por lo que en un cultivo agrícola o pastoril el uso de árboles -en la proporción adecuada- no afecta los rendimientos de manera significativa. Y a ello deben agregarse el valor forestal y múltiples contribuciones a la producción animal:

- ♦ aporte directo de forraje: follaje y ramas tiernas, frutos (ej. algarrobo y caldén, con destacados niveles de productividad y calidad),
- mejor calidad de los pastos que crecen bajo la canopia arbórea (mayor contenido proteico y menor nivel de fibra), y
- bienestar del rodeo por aporte de sombra durante el verano y reparo en el invierno.

En resumen, aprovechamiento múltiple de los recursos sin detrimento de producción, participación en los ciclos minerales, reducción de procesos erosivos, regulación de radiación, temperatura y humedad entre los estratos vegetales, mejoramiento de las características físicas del suelo y aporte de materia orgánica son, entre otras, las contribuciones que las especies leñosas, bien conducidas, hacen al sistema.

BIBLIOGRAFÍA CONSULTADA

Anderson, D. L. 1980. Manejo racional de un campo en la región árida de los llanos de La Rioja (Rep. Arg.). Parte I y II. INTA.

Karlin, O.U. 1983. Recursos forrajeros naturales del Chaco Seco: manejo de leñosas. II Reunión de intercambio tecnológico en zonas áridas y semiáridas (Conf.).

Losada, D.; Orquín, L.; Delgado, M.; Gabutti, E. y Bertón, J. 1983. Intercepción de las precipitaciones y su distribución en una comunidad de bosques de caldén (*P. caldenia* Burk.). 7° Reunión nac. para el estudio de las regiones áridas y semiáridas. INTA, IDIA n° 36: 115-119.

Ministerio de Agricultura y Ganadería - Dirección Gral. de Investigaciones Agrícolas - Instituto de Suelos y Agrotecnia 1957. Conservación del suelo y del agua.

Porta, J.; López Avecedo, M.; Roquero, C. 1994. Edafología para la agricultura y el medio ambiente. Ed. Mundi-Prensa.

Volver a: Manejo silvopastoril