UTILIZACIÓN DE SECUESTRANTES DE MICOTOXINAS

PROF. DR. ANTONIO SÉRGIO DE OLIVEIRA

UEL – UNIVERSIDADE ESTADUAL DE LONDRINA

DP. BIOQUÍMICA-BIOTECNOLOGIA

CBA – CENTRO DE BIOTECNOLOGIA AGROPECUÁRIA

asergio@sloagropecuaria.com.br

Fone: +55 43 31545510

Adsorbentes

Los adsorbentes actúan como "secuestradores químicos", formando enlaces con las moléculas de micotoxinas en el tracto gastrointestinal y reducen el grado de absorción de micotoxinas por el intestino, reduciendo así la toxicidad sistémica en el organismo (Sekiyama et al, 2007; Huwig et al .., 2001 ; YIANNILOURIS et al, 2006).

La eficiencia de enlace entre el adsorbente y la toxina depende de las propiedades químicas y físicas de ambas moléculas (Avantaggiato et al., 2004). Debido a estas diferencias en los parámetros físicos y químicos, es importante para estudiar la eficacia de cada adsorbente (Huwig et al., 2001).

Tipos de adsorbentes

Los adsorbentes pueden clasificarse como polímeros orgánicos e inorgánicos. Polímeros inorgánicos se basan en silicatos, como zeolitas, aluminosilicato de sodio y el hidrato de calcio (HSCAS), bentonita, carbón activado y tierra de diatomeas. Los polímeros orgánicos se derivan de fibra vegetal (cáscaras de avena, salvado de trigo y fibra de la alfalfa), celulosa, hemicelulosa, pectina y extractos de la pared celular de la levadura (Smith, 2008; Denli y Pérez, 2007; SABATER-Vilar, 2007; Whitlow et al, 2006).

Las zeolitas son cristales el aluminosilicatos hidratados con estructura porosa principalmente adsorber compuestos polares con alta selectividad y también tiene la capacidad de la hidratación y deshidratación sin cambiar la estructura química (Mumpton, 1999).

El hidrato de aluminosilicato de sodio y calcio (HSCAS) es un tipo montmorillonita que consiste en capas cristalinas y poseen propiedades fisicoquímicas similares a las zeolita: Ambos pueden ser aplicados en la adsorción de micotoxinas (Huwig, 1999 PAPAIOANNOU et al., 2005).

El carbón activado es un compuesto formado por pirólisi (descomposición a altas temperatura: de material orgánico. Tiene pobr solubilidad y muchos poros en su estructura (Edrington, et al., 1997; Hatc et al., 1982). Su capacidad de adsorción s ha utilizado desde el siglo 19, como u antídoto contra la intoxicación. E solución acuosa puede absorber gra cantidad de micotoxinas de maner eficiente. La mezcla de carbón activad con beta glucano de levadura actúa com adsorbente y ejerce efectos beneficiosc sobre el sistema inmune del anima mediante la estimulación de activida antitumoral y antimicrobiana en el organismo (Brown, Gordon 2001).

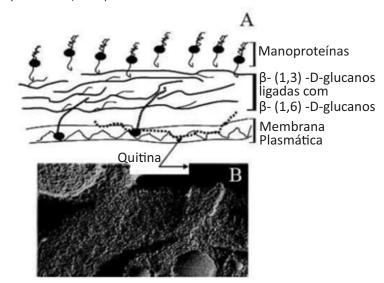
Algunos de los adsorbentes y tasa de adsorción de algunas toxinas se muestran en la Tabla 1.

Los principales componentes d las paredes celulares de los hongos so polisacáridos y glicoproteínas, formado

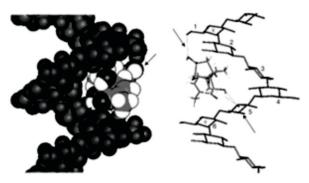
Tabela 1. Adsorção *in vitro* de micotoxinas por diferentes adsorventes orgânicos e inorgânicos/ Tabla 1. Adsorción in vitro de micotoxinas con diferente adsorbentes orgánica e inorgánica

Sorvente	Micotoxina	Percentagem Sorção (%)	Referências
Carvão Ativado		99.9	
Colestiramina		64.9	
Mananas (S. cerevisiae)		84.6	
β - glucana de algas	DON*	81.1	Cavret et al., 2009.
β - glucana de fungos		80.0	
Zeolitas		2	
Glicomananas		1	
Bentonina	DON**	2	Avantaggiato et al., 2004
Celite		1	
	FB ₁ **	100	
0	ZEA**	100	
Carvão Ativado	DON**	95	
	NIV**	63	
			Avantaggiato et al., 200
	FB ₁ **	10	
ou:	ZEA**	11	
Glicomanana	DON**	1	
	NIV**	3	
HSCAS+BETA GLUCANA (LEVEDURA)	AFLA FB	92 95	
CARVÃO ATIVADO+BETA GLUCANA (LEVEDURA)	DON ZEA	97,9 96,5	Oliveira, A.S., et al., 2010.

FB₁ = Fumonisina B₁ DON = Desoxinivalenol ZEA= Zearalenona NIV= Nivalenol $*=1 \mu M$ de toxina $**=2 \mu g/ml$ de toxina


por moléculas de β- (1,3) -D-glucanos con un alto grado de polimerización, lineal ramificada cadenas laterales con β- (1,6) -D-glucanos. La estructura tridimensional de β-D-glucano está formado por espiral más organizada o conformaciones aleatorias se componen de varios cadena de una hebra, densamente empaquetados en triple hélice, estabilizada por enlaces de hidrógeno intramolecular o transversal, como se muestra en la Figura 1 (Kollar et al., 1997).

La capa interna de la pared celular está firmemente unida a la membrana plasmática por medio de cadenas lineales de quitina compuestas de alrededor de 90 unidades de N-acetilglucosamina. La capa exterior se compone de manoproteínas, cuya función es el intercambio de moléculas con el ambiente externo (JOUANY et al., 2007). Los $\beta\text{-D-glucanos}$ y quitina son responsables de la rigidez de la pared celular, mientras que las manoproteínas son responsables de reconocimiento celular y las interacciones con el medio ambiente.


Las paredes de las células de Saccharomyces cerevisiae se pueden añadir a los alimentos contaminadas para eliminar selectivamente la zearalenona, aflatoxina B1, deoxinivalenol y ocratoxina, evitar los efectos negativos sobre el metabolismo de los animales (YIANNIKOURIS et al., 2006).

Estudios *in vitro* con análisis interacciones cinéticas entre la molécula de β -D-glucano y la micotoxina la formación dos enlaces de hidrógeno entre los grupos hidroxilo de la molécula deoxinivalenol situado en los carbonos 3 y 7, vinculados a los grupos hidroxilo de la molécula de β -glucano, como se muestra en la Figura 2 (YANNIKOURIS et al., 2006). Estos enlaces son estables cuando se someten a cambios de pH que se encuentran en todo el tracto digestivo (YIANNIKOURIS et al., 2004).

Cavret et al. (2009) informaron de que una mezcla de dos o más adsorbentes resulta ser más eficaz que adsorción del deoxinivalenol, teniendo en cuenta que por lo general son multi contaminaçión de

Figura 1. Esquema da organização química da parede celular de *Sccharomyces cerevisiae* (A) e microscopia eletrônica de varredura da parede celular de levedura (B) (JOUANY et al., 2007).

Figura 2. Conformação favorável para interação entre β-glucana e DON, setas indicam os hidrogênios envolvidos na interação (YANNIKOURIS et al., 2006).

micotoxinas en el grano. Por lo tanto, el potencial para la desintoxicación sería efectivo para otras micotoxinas.

Tabela 2. Resultados dos experimentos de adsorção *in vitro* de aflatoxina B_1 em relação à porcentagem de adsorção./ Tabla 2. Resultados de experimentos de adsorción *in vitro* de aflatoxina B1 en relación con el porcentaje de adsorción.

Nº do		tempo	[adsorvente]	[toxina]	0/ 4 1 ~			
Experimento	рН	(min)	(%)	(ppm)	% Adsorção			
1	3	30	1.0	1,0	96,4%			
2	6	30	1.0	1,0	96%			
3	3	90	1.0	1,0	97%			
4	6	90	1.0	1,0	96,5%			
5	3	30	2.0	1,0	100,0%			
6	6	30	2.0	1,0	98,9%			
7	3	90	2.0	1,0	97,5%			
8	6	90	2.0	1,0	98%			
9	3	30	1.0	3,0	79,9%			
10	6	30	1.0	3,0	80%			
11	3	90	1.0	3,0	81,7%			
12	6	90	1.0	3,0	83,8%			
13	3	30	2.0	3,0	99%			
14	6	30	2.0	3,0	100%			
15	3	90	2.0	3,0	98%			
16	6	90	2.0	3,0	97,9%			
17	4,5	60	1.5	2,0	96,1%			
18	4,5	60	1.5	2,0	97%			
19	4,5	60	1.5	2,0	96,5%			
20	4,5	60	1.5	2,0	95,9%			

Tabela 3. Resultados dos experimentos *in vivo* em aves.

Tab.3 - Desenvolvimento zootécnico de aves submetidas a alimentação com dietas adicionadas Aflatoxinas (AFLA) e aditivo adsorvente de micotoxinas (AAM) BIOSEQUEST® AFLA - Variáveis: Consumo de ração (CR), ganho de peso (GP), conversão alimentar (CA), variação doe peso de figado (PF) e níveis proteínas plasmáticas totais (NPP), Coeficiente de variação (CV)

Tratamentos CR GP CA CR GP <	valiação dos peso de ligado (11) e inveis proteinas plasmadeas totais (111), Coenciente de valiação (CV)														valla		
T1 CONTROLE 174,0 ^a 163,4 ^a 1,07 ^a 297,6 ^a 255,0 ^a 1,2 ^a 672,2 ^a 339,3 ^a 1,98 ^a 1143,8 ^a 757,7 ^a 1,51 ^a 2,30 ^a T2 AAM (2%) 173,9 ^a 167,8 ^a 1,04 ^a 298,0 ^a 258,4 ^a 1,15 ^a 673,3 ^a 345,0 ^a 1,95 ^a 1145,2 ^a 770,4 ^a 1,5 ^a 2,35 ^a T3 AFLA (2,8 ppm) 149,5 ^b 119,0 ^b 1,26 ^b 260,0 ^b 185,0 ^b 1,41 ^b 565,0 ^b 228,0 ^b 2,5 ^b 974,5 ^b 532,0 ^b 1,84 ^b 3,25 ^b T4 AAM (1%) AFLA (2,8 ppm) 172,0 ^a 159,0 ^a 1,08 ^a 290,0 ^a 240,0 ^a 1,21 ^a 641,4 ^a 298,8 ^a 2,14 ^a 1103,4 ^a 697,8 ^a 1,58 ^a 2,45 ^a T5 AAM (2%) AFLA (2,8 ppm) 173,5 ^a 170,5 ^a 1,02 ^a 293,5 ^a 258,5 ^a 1,14 ^a 666,8 ^a 345,5 ^a 1,93 ^a 1133,8 ^a 774,5 ^a 1,46 ^a 2,40 ^a				21 DIAS	1 A	15 A 21 DIAS			8 A 14 DIAS			s	a 07 DIA	01			
T2 AAM (2%) 173,9 ² 167,8 ² 1,04 ² 298,0 ² 258,4 ² 1,15 ² 673,3 ² 345,0 ² 1,95 ² 1145,2 ² 770,4 ² 1,5 ² 2,35 ² T3 AFLA (2,8 ppm) 149,5 ³ 119,0 ³ 1,26 ³ 260,0 ³ 185,0 ³ 1,41 ³ 565,0 ³ 228,0 ³ 2,5 ³ 974,5 ³ 532,0 ³ 1,84 ³ 3,25 ³ T4 AAM (1%) AFLA (2,8 ppm) 172,0 ² 159,0 ² 1,08 ² 290,0 ² 240,0 ² 1,21 ² 641,4 ² 298,8 ² 2,14 ² 1103,4 ² 697,8 ² 1,58 ² 2,45 ² T5 AAM (2%) AFLA (2,8 ppm) 173,5 ² 170,5 ² 1,02 ² 293,5 ² 258,5 ² 1,14 ² 666,8 ² 345,5 ² 1,93 ² 1133,8 ² 774,5 ² 1,46 ² 2,40 ²	NPP g/DL	VPF	CA	GP	CR	CA	GP	CR	CA	GP	CR	CA	GP	CR	Tratamentos		
T3 AFLA (2,8 ppm) 149,5b 119,0b 1,26b 260,0b 185,0b 1,41b 565,0b 228,0b 2,5b 974,5b 532,0b 1,84b 3,25b T4 AAM (1%) AFLA (2,8 ppm) 172,0a 159,0b 1,08a 290,0a 240,0b 1,21a 641,4b 298,8b 2,14ab 1103,4b 697,8b 1,58a 2,45a T5 AAM (2%) AFLA (2,8 ppm) 173,5a 170,5a 1,02a 293,5a 258,5a 1,14a 666,8a 345,5a 1,93a 1133,8a 774,5a 1,46a 2,40a	3,17ª	2,30ª	1,51ª	757,7ª	1143,8ª	1,98ª	339,3ª	672,2ª	1,2ª	255,0ª	297,6ª	1,07ª	163,4ª	174,0ª	CONTROLE	Tl	
T4 AAM (1%) AFLA (2,8 ppm) AFLA (2,8	2,99ª	2,35ª	1,5ª	770,4ª	1145,2ª	1,95ª	345,0ª	673,3ª	1,15ª	258,4ª	298,0ª	1,04ª	167,8ª	173,9ª	AAM (2%)	T2	
AFLA (2,8 ppm) 172,0 ^a 159,0 ^a 1,08 ^a 290,0 ^a 240,0 ^a 1,21 ^a 641,4 ^a 298,8 ^a 2,14 ^a 1103,4 ^a 697,8 ^a 1,58 ^a 2,45 ^a T5 AAM (2%) AFLA (2,8 ppm) 173,5 ^a 170,5 ^a 1,02 ^a 293,5 ^a 258,5 ^a 1,14 ^a 666,8 ^a 345,5 ^a 1,93 ^a 1133,8 ^a 774,5 ^a 1,46 ^a 2,40 ^a	1,75b	3,25b	1,84 ^b	532,0b	974,5b	2,5b	228,0 ^b	565,0 ^b	1,41 ^b	185,0 ^b	260,0b	1,26b	119,0 ^b	149,5b	AFLA (2,8 ppm)	T3	
AFLA (2,8 ppm) 173,5 ^a 170,5 ^a 1,02 ^a 293,5 ^a 258,5 ^a 1,14 ^a 666,8 ^a 345,5 ^a 1,93 ^a 1133,8 ^a 774,5 ^a 1,46 ^a 2,40 ^a	2,86ª	2,45ª	1,58ª	697,8*	1103,420	2,14 ^{ab}	298,8®	641,4 ²⁰	1,21ª	240,0 ²⁶	290,0ª	1,08ª	159,0®	172,0ª		T4	
CV Peso em gramas - 0,12 0,12 0,15 0,13	3,02ª	2,40ª	1,46ª	774,5ª	1133,8ª	1,93ª	345,5ª	666,8ª	1,14ª	258,5ª	293,5ª	1,02ª	170,5ª	173,5ª		T5	
		-	-	0,13		-	0,15	-	-	0,12	-	-	0,12		Peso em gramas	CV	

Médias nas colunas seguidas por letras diferentes são estatisticamente significativas pelo teste de <u>Tukey</u> ($P \le 0.05$). Avaliação da mortalidade: Observou-se alta mortalidade no tratamento (T3) que recebeu AFLA sem AAM. Nos outros tratamentos o índice de mortalidade foi normal (<2%).

Tabela 4. Níveis do planejamento estatístico 2⁴ contendo três pontos centrais, com variáveis codificadas e decodificadas (pH, concentração de DON, percentagem e proporção dos adsorventes carvão ativado e β-glucana) e a percentagem dos resultados da adsorção de DON, nos tempos de incubação de 30, 60 e 90 minutos in vitro.

Ensaios		Vari Codif	áveis icadas			Variáve	is Decodifica	Adsorção de DON (%)				
Lumor	X ₁	\mathbf{X}_{2}	X_3	X_4	pН	Toxina (ng)	Adsorvente (%)	Proporção CA/ BG	30 min	60 min	90 min	
1	-1	-1	-1	-1	3	2500	0,2	В	95,9	86,9	14,7	
2	1	-1	-1	1	7	2500	0,2	Α	35,8	41,7	14,4	
3	-1	1	-1	1	3	7500	0,2	Α	77,3	68,2	68,9	
4	1	1	-1	-1	7	7500	0,2	В	88,8	90,7	92,5	
5	-1	-1	1	1	3	2500	2,0	Α	39,1	25,1	26,4	
6	1	-1	1	-1	7	2500	2,0	В	100,0	100,0	100,0	
7	-1	1	1	-1	3	7500	2,0	В	100,0	97,9	95,6	
8	1	1	1	1	7	7500	2,0	Α	70,3	50,5	17,5	
9	0	0	0	0	5	5000	1,1	C	76,9	91,2	94,9	
10	0	0	0	0	5	5000	1,1	С	76,8	91,1	94,5	
11	0	0	0	0	5	5000	1,1	С	73,9	91,6	94,6	

Tab.05-Desempenho zootécnico de suínos submetidos à alimentação com dietas adicionadas DON (Deoxinivalenol) e Aditivo Adsorvente de Micotoxinas (AAM) − Biosequest T.R. [®]. Variáveis: Peso inicial (PI); Peso médio final (PMF); Variação de peso médio (VGPM) e ganho de peso médio diário (GPMD).

FASES EXPERIMENTAIS (DIAS)

Peso in vivo (KG)			01 a 07 DIAS			8 A 14 DIAS			15 A 21 DIAS			22	A 28 DI	AS	1 A 28 DIAS			
Tratamentos		Ei(kg)	PMF	VGPM	GPMD	PMF	VGPM	GPMD	PMF	VGPM	GPMD	PMF	VGPM	GPMD	PMF	VGPM	GPMD	GP%
T1	CONTROLE	12ª	14,5ª	2,5	0,36	20,5ª	6	0,86	25,1ª	4,6	0,66	31,7ª	6,6	0,94	31,7a	19,7	0,7	62,20
T2	AAM (1%)	12ª	15,0ª	3.	0,43	21,0ª	6.	0,86	25,9ª	4,9	0,7	32,5a	6,6	0,94	32,5a	20,5	0,73	63,08
ТЗ	DON (10Mg/Kg)	12ª	13,5b	1,5	0,21	16,0b	2,5	0,36	17,0°	1	0,14	17,5°	0,5	0,07	17°	5.	0,18	29,41
T4	AAM (1%), DON (10Mg/Kg)	12ª	14,6ª	2,6	0,37	20,3ª	5,7	0,81	24,5ªb	4,2	0,6	31 ^{ab}	6,5	0,93	31 ^{ab}	19	0,68	61,30
T5	AAM (0,5%) DON (10Mg/Kg)	12ª	14,3ªb	2,3	0,33	19,5ªb	5,2	0,74	23,5b	4	0,57	30b	6,5	0,93	30b	18	0,64	60,00
cv	COEFICIENTE DE VARIAÇÃO (CV)				2,05			2,08			2,17			2,12				

^{*}Letras diferentes na mesma linha diferem pelo teste de Tukey (p≤0,05)

REFERENCIAS BIBLIOGRÁFICAS

BATA, A.; LASZTITY, R. Detoxification of mycotoxin-contaminated food and feed by microorganisms. **Trends in Food Science** and **Technology**, v.10, p.223–228, 1999.

HUWIG, A., FREIMUND, S., KÄPPELI, O., DUTLER, H. Mycotoxin detoxication of animal feed by different adsorbents. **Toxicology Letters** 122, 179-188, 2001.

JOUANY, J; YIANNIKOURIS, P; BERTIN, A, G. The chemical bonds between mycotoxins and cell wall components of *Saccharomyces cerevisiae* have been identified. **Archiva Zootechnica**, v.8, p. 26-50, 2005.

MALLMANN, C. A; DILKIN, P; GIACOMINI, L. Z; RAUBER, R. H. Critérios para Seleção de um Bom Sequestrante para Micotoxinas. In: Conferência APINCO. Santos: **FACTA** – Fundação APINCO de Ciência e Tecnologia, p. 213-224, 2006.

PAPAIOANNOU, D; KATSOULOS, P. D; PANOUSIS, N; KARATZIAS, H. The role of natural and synthetic zeolites as feed additives on the prevention and/or the treatment 100 of certain farm animal diseases: A review. **Microporous esoporous Materials**, v. 84, p.161-170, 2005.

SWEENEY, M.J; DOBSON, A.D.W. Mycotoxin Production by *Aspergillus, Fusarium* and *Penicillium* Species. *International Journal of Food Microbiology*, v. 43, p. 141 – 158, 1998.

YIANNIKOURIS, A; ANDRE, G; POUGHON, L; FRANÇOIS, J; DUSSAP, C.G; JEMINET, G; BERTIN, G; JOUANY, J. P. Chemical and Conformational Study of the Interactions Involved in Mycotoxin Complexation with β-D-Glucans. **Biomacromolecules**, v.7, p.1147-1155, 2006.