

DETERMINACIÓN DE RESISTENCIA ANTIHELMÍNTICA FRENTE A IVERMECTINA DE NEMATODOS GASTROINTESTINALES EN ALPACAS (*VICUGNA PACOS*) PUNO - PERÚ.

Determination of anthelmintic resistance in front of ivermectina of nematodes gastrointestinales in alpacas (vicugna pacos) Puno – Perú.

Méd. Vet. y Zoot. M.Sc. Salud Pública Ciro Marino Traverso Arguedas*. 2011. Enviado por el autor. *Universidad Nacional del Santa, Ancash–Perú, Escuela de Post Grado, estudiante del Programa Doctoral con mención en Biología. Universidad Nacional del Altiplano, Facultad de Medicina Veterinaria y Zootecnia, Puno-Perú, Docente Principal a dedicación exclusiva. Proyecto especial de Camélidos Sudamericanos, consultor, Puno, Perú.

RESUMEN

Se determinó la resistencia antihelmintica de nematodos frente a ivermectina (10mg/ml), en 60 alpacas entre machos y hembras del centro de Crianza de Alpacas del Gobierno Regional de Puno – PECSA –Illpa- Puno. Los animales fueron tratados con 200 mcg de ivermectina por kilo de peso vivo. Se obtuvo muestras fecales de cada animal cada 15 días, 03 muestras antes y 03 muestras después del tratamiento. En la cuarta muestra se determinó los niveles de infección parasitaria. Al día siguiente del tratamiento se aplicó antianémico/anabolizante en dos dosis cada 48 horas. Luego de obtener las muestras fecales se realizó la prueba de reducción de ovoposición (FCRT). Se obtuvo resistencia antihelmíntica para Estrongylulus en 100%, seguido de Nematodirus sp y Lamanema chavezi para los niveles de infección leve, moderada y alta en machos y hembras. La alta resistencia para el nivel de infección leve en machos fue para L. chavezi con 79,62%, seguido de animales machos con nivel de infección moderada con 89,98%, y hembras con nivel de infección leve con 82,23%. Las alpacas machos, muestran mayor resistencia antihelmíntica con 88.78%, siendo Estrongylus los más resistentes con 78.66%, seguido de L. chavezi con 79,62%. La reducción de ovoposición inferior al 80% (resistencia alta) fue 25%, 10% y 10% para los niveles de infección leve moderada y alta, respectivamente. La resistencia mediana para nematodos gastrointestinales fue de 28,33% para Estrongylus, Nematodirus sp y L. chavezi.

Palabras claves: Antihelmíntico. Ivermectina. Tés de reducción de ovoposición (FECRT). HPG. Nematodos.

SUMMARY

The nematodes antihelmintic resistence in front of ivermectina (10 mg/ml), was determined in 60 alpacas amongst males and female from Alpacas Breeding Center of Regional Government of Puno – PECSA –Illpa-Puno. The animals were treated with ivermectina at 200 ncg/Kg. to live weight. Fecal matter of each animal was obtained every 15 days, 03 samples before and 03 samples after of the treatment. The parasitic infection levels was determined in the fourth sample. The next day of treatment antianemic/anabolizant was applied in two doses every 48 hours. After obtained the fecal samples carried out the ovoposition reduction test (FCRT). The antihelmintic resistence for *Estrongylus* was obtained in 100%, followed by *Nematodirus sp* and *Lamanema chavezi*, for the light, moderate and high infection levels in males and females. The high resistence for light infection level in males was *Lamanema chavezi* with 79.62%, followed by animals males to moderate infection level with 89.98%, and females to light infection level with 82.23%. The alpacas males, show greater antihelmintic resistence with 88.78%, being *Estrongylus* the most resistant with 78.66%, followed of *Lamanema chavezi* with 79.62%. The reduction of ovoposition overlying to 80% (high resistence) was 25%, 10%, and 10% for light, moderate and high

infection levels, respectively. The medium resistence for nematodes gastrointestinals was 28.33% for *Estrongylus, Nematodirus sp* and *Lamanema chavezi*.

Key words: Antihelmíntico. Ivermectina. Test of ovoposición reduction (FECRT). HPG. Nematodes.

INTRODUCCIÓN

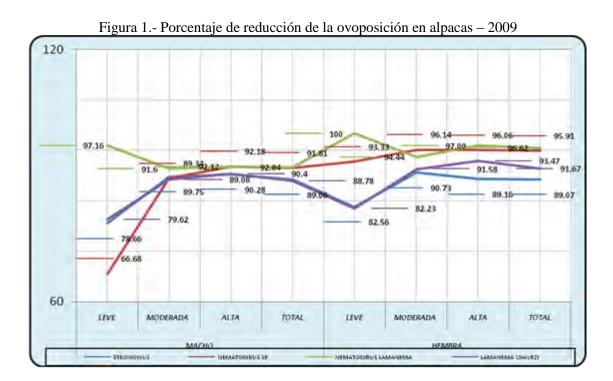
El control eficiente de las parasitosis en alpacas se puede lograr con un manejo adecuado de las superficies de pastoreo y el uso estratégico y mínimo de antiparasitarios. Sin embargo, en la práctica productiva se ha instaurado la administración regular de antiparasitarios como una rutina que se realiza incontroladamente y sin ningún criterio técnico. Este hecho es la principal causa de un aumento de la resistencia antihelmíntica de los parásitos. Se considera que hay resistencia cuando la efectividad de un fármaco cesa o disminuye. Ello se produce porque después de cada tratamiento sobrevive un pequeño número de individuos que son resistentes al fármaco utilizado, y son los únicos que logran reproducirse y contaminar las pasturas con sus huevos (Jackson, 1993).

Con la continua selección de los individuos resistentes que se produce por el uso repetido de los antiparasitarios, aumenta la frecuencia de los genes de la resistencia en una población, hasta producir el reemplazo de la población sensible por una población resistente al fármaco con el consiguiente fracaso del tratamiento antihelmíntico (Romero *et al.*, 1998, Sangster, 1999). El establecimiento de una población resistente a un antihelmíntico es un proceso de carácter irreversible. La resistencia antihelmíntica frente a las ivermectinas se presenta especialmente en los equinos, ovinos y caprinos (Craven y col., 1999).

Sobre resistencia a ivermectina de parásitos especialmente frente a nematodos gastrointestinales en las alpacas la información es escasa, la Asociación Mundial para el Avance de la Parasitología Veterinaria (WAAVP) ha estandarizado las pruebas para detectar la resistencia antihelmíntica de nematodos (Coles y col., 1992). Una de ellas es la prueba *in vivo* de reducción de la ovoposición en la materia fecal FECRT (fecal egg count reduction test), que determina la eficacia antihelmíntica comparando la eliminación de huevos antes y después de un tratamiento. El objetivo del presente trabajo fue determinar resistencia antihelmíntica de los nematodos gastrointestinales en la alpaca frente a la ivermectina 10 mg/ml, mediante la prueba FECRT, en el Centro de Crianza de Alpacas del Gobierno Regional de Puno - PECSA - Illpa - Puno/Perú.

MATERIAL Y MÉTODOS

El presente trabajo se realizó en el Centro de Crianza de Alpacas del Gobierno Regional de Puno - PECSA - Illpa - Puno, situado en el Distrito de Atuncolla, que se encuentra ubicada a una altitud de 3,845 m.s.n.m., en la provincia y región de Puno, cuyas latitudes comprende entre los 14°22' y 15°6' de latitud sur y los 72°52' y 73°25' de Longitud oeste del meridiano de París y una altitud de 3,920 msnm. (SENAMHI, 2004). El examen de laboratorio se realizó en el laboratorio de Farmacología de la Facultad de Medicina Veterinaria y Zootecnia de la Universidad Nacional del Altiplano–Puno y en el laboratorio particular "Orión" de la ciudad de Puno, que queda ubicado a 3,824 msnm. (SENAMHI, 2004).


Se seleccionaron 60 alpacas comprendidas entre 2 y 3 años de edad, de la raza Huacaya, de los cuales 30 fueron machos y 30 hembras, sin que hayan recibido desparasitación alguna 90 días antes de efectuar el trabajo de investigación, dicho trabajo se llevó a cabo en los meses comprendidos de junio a octubre del 2009, todos los animales seleccionados fueron pesados. Se colectaron las muestras de heces directamente de la ampolla rectal de las alpacas cada 15 días durante tres meses y medio (3.5). Las muestras de heces recolectadas fueron procesadas por la técnica de McMáster Modificada (Morales, Pino, 1977), y sus resultados estuvieron expresados en huevos por gramo de heces (HPG). Los niveles de infección individual fueron determinados en base a los resultados del recuento de HPG de las tres (3) primeras muestras de heces. Durante el cuarto muestreo coproparasitológico, los animales seleccionados se sometieron a tratamiento antihelmíntico, empleando un producto de larga resistencia como es la ivermectina de 10 mg/ml, en una dosis de 200 ncg/kilo de peso vivo. Al día siguiente de efectuado el tratamiento antihelmíntico, a las alpacas seleccionadas se les administró un antianémico/anabolizante por dos veces a un intervalo de 48 horas. A los 15 días subsiguientes de realizado el tratamiento antihelmíntico, se obtuvieron muestras de heces, que corresponden a la 5ta, 6ta, y 7ma muestra, obtenido el promedio de estas muestras se realizó el tés de reducción de HPG o prueba de reducción de la ovoposición en la materia fecal (FECRT) (fecal egg count reduction test) esta se calculó mediante la fórmula (Young y col. 1999), se utilizó un diseño experimental con mediciones repetidas con tres factores: sexo del animal, nivel de infestación, tratamiento antihelmíntico, con un diseño completamente al azar haciendo uso del paquete estadístico que fue el SPSS versión 15 (2007).

RESULTADOS Y DISCUSIÓN

Cuadro 1.- Promedio de huevos de nematodos diferenciados por gramo de heces antes y después del tratamiento con ivermectina y porcentaje de reducción de la ovoposición en alpacas, según sexo y nivel de infección, Puno – Perú - 2009.

SEXO	NIVEL DE INFECCION	Strongylus			Nematodirus sp			Nematodirus lamae			Lamanema chavezi		
		HPG. AT	HPG. DT.	% RED.	HPG. AT	HPG. DT.	% RED.	HPG. AT	HPG. DT.	% RED.	HPG. AT	HPG. DT.	% RED.
масно.	LEVE.	46.90	10.01	78.66	25.02	0.83	96.68	23.25	0.66	97.16	45.01	9.17	79.62
	MODERADA	178.78	18.32	89.75	78.15	8.33	89.34	69.41	5.83	91.60	152.52	16.66	89.08
	ALTA.	300.02	29.17	90.28	181.28	14.16	92.18	158.77	12.50	92.12	225.65	21.66	90.40
	TOTAL.	175.23	19.16	89.06	94.81	7.77	91.81	83.77	6.66	92.04	141.06	15.83	88.78
HEMBRA.	LEVE.	52.52	9.16	82.56	25.02	1.67	93.33	24.40	0.0	100.00	46.90	8.33	82.23
	MODERADA	188.77	17.49	90.73	86.27	3.33	96.14	75.01	4.17	94.44	158.15	13.32	91.58
	ALTA.	300.02	32.50	89.16	211.90	8.33	96.06	171.90	5.00	97.09	255.02	16.66	93.47
	TOTAL.	180.43	19.71	89.07	107.73	4.40	95.91	90.43	3.05	96.62	153.35	12.77	91.67

HPG: huevos por g. de heces. AT: antes del tratamiento. DT: después del tratamiento. % RED: Porcentaje de reducción de huevos por gramo de heces

La carga parasitaria en las alpacas según se muestra en el cuadro 1, al pastoreo no es constante según el nivel de infección y el sexo, que esta fluctúa en función a los diversos factores como el grado de inmunización de los animales y la disposición larvaria en los pastos, la inhibición larvaria y la longevidad del parasito (Romero *et al.*, 1998), los datos de la presente investigación coinciden con lo que manifiesta (Melo, 1997), que la carga promedio de HPG hallada en alpacas muestra un promedio de 791 HPG, con rangos de 100 a 800, la clasificación por el nivel de infección estuvo sujeto al número de HPG, el mismo que se determinó para la resistencia antihelmíntica frente a la ivermectina según el nivel de infección.

El mayor número de HPG para los nematodos gastrointestinales fue para los huevos de tipo *Strongylus*, seguido de *L. chavezi*, *Nematodirus* sp y *N. lamae* para los tres niveles de infección, concuerda con lo que manifiesta (Mamani, 1989), que encontró datos similares para la época de seca en alpacas de la comunidad de Chichillapi-Puno, asimismo Chávez y Condori (1990) que hallaron recuentos elevados de huevos por gramo de heces para los huevos tipo *Strongylus*, *Lamanema* y *Nematodirus* tanto en alpacas jóvenes y adultas; frente a la carga parasitaria de las alpacas, las que tienen edades mayores a 2 años son las que presentan cargas parasitarias promedios más altas (Chávez y col., 1967), que probablemente se deba a los géneros o especies de larvas infectantes en las praderas donde pastorean las alpacas (Valenzuela, 1992), por lo tanto la presencia de los parásitos varia como consecuencia de la influencia climática, atributos propios del hospedador como el estado inmune, y como consecuencia de características propias del parásito, como por ejemplo la hipobiosis, concordando con lo que manifiesta Boch y Supperer (1977), por lo tanto la multiplicación de los parásitos depende de la intensidad de invasión y condición

general del hospedador, asimismo, se describe que las hembras presentan menos parásitos que los machos, lo que hace suponer que los niveles hormonales y la edad estaría influenciando, coincidiendo con lo que manifiesta Dunn, (1993).

Se seleccionaron alpacas de 2 a 3 años de edad, en vista que las alpacas menores de dos años de edad son muy susceptibles a la infección por nematodos gastrointestinales, esto sugiere que hasta esta edad la respuesta inmune es muy deficiente (Leguía y Casas, 1999), es por ello que la edad mayor de los dos años incrementa la resistencia para el establecimiento de la mayoría de poblaciones parasitarias coincidiendo con lo que expresa Holmes y Coop (1994), de ello deducimos que el grado de inmunidad varía de acuerdo a la especie parasitaria y al periodo de exposición a la infección, a factores genéticos, conductuales nutricionales o ambientales.

Para la prueba (FECRT), una reducción de la ovoposición después del tratamiento inferior al 90%, es indicativa de resistencia antihelmíntica de los parásitos involucrados (Coles y col., 1994). Según este criterio (cuadro y figura 1), en las alpacas de 2 a 3 años no hubo resistencia antihelmíntica al encontrarse más del 90.0% de reducción de la ovoposición para *Nematodirus* sp., *N. lamae*, para los niveles de infección leve, moderada y alta, de esto se puede deducir que estos parásitos deben estar en pleno proceso de selección de las cepas de nematodos resistentes, siendo los *Estrongylus* los géneros más resistentes para los niveles de infección leve moderada y alta, tanto para los machos como para las hembras, seguido de la resistencia para la *L. chavezi*, que mostro mayor resistencia a las ivermectinas para la infección leve en machos con 79.62%, seguido del nivel de infección moderada en machos con 89.08%, asimismo se presentó resistencia a las ivermectinas por *L. chavezi* para el nivel de infección leve para las hembras con un 82,23%.

Para *L. chavezi* en forma general, los machos son los que presentan mayor resistencia antiparasitaria a las ivermectinas con un valor de 88.78% de reducción de la ovoposición, como el género más resistente, seguido por *Estrongylus* con 89.06% (cuadro y figura 1). Ello concuerda con lo observado en Chile (Moenen-Locoz 1998, Sievers y Fuentealba 2003), en Argentina (Fiel y col., 2000, Anziani y col., 2001), y en Nueva Zelanda (Vermunt y col., 1995).

Los resultados difieren con el trabajo realizado en Inglaterra (Armour y col., 1980), pero ello puede deberse a que en ese entonces todavía no se había desarrollado resistencia antihelmíntica al producto. Resistencia antihelmíntica se ha descrito en los nematodos de ovinos, caprinos y equinos, existiendo al respecto literatura suficiente (FAO, 2003). Una de las razones que en esas especies se desarrolle más rápido la resistencia antihelmíntica puede deberse a la longevidad de sus parásitos, que supera los 150 días. De esta manera, al aplicar un producto sobre la población parasitaria, sobreviven algunos individuos y son sólo ellos los que producen la contaminación de las áreas de pastoreo durante un tiempo largo. En cambio, en las alpacas los nematodos sólo viven 20 a 35 días como parásitos dentro del animal (Leguia y Casas, 1999) y, consecuentemente, los parásitos que sobreviven a un tratamiento logran contaminar mucho menos las pasturas, reduciéndose de esa forma la posibilidad de infecciones exitosas con las cepas de nematodos resistentes y el reemplazo de la población.

En ambos sexos cerca de la mitad de los animales presentó una reducción de la ovoposición superior al 90%, lo cual indica que existen animales portadores de parásitos sensibles a la ivermectina. En el presente estudio se detectó una resistencia moderada al producto porque no hubo alpacas con porcentajes de reducción de la ovoposición inferiores al 70% (resistencia muy alta); esto se explica porque en el Centro de Crianza de Alpacas del Gobierno Regional de Puno - PECSA - Illpa - Puno, donde se llevó a cabo la presente investigación, el tratamiento con ivermectinas se está aplicando en forma esporádica en la alpacas.

Cuadro 2.- Distribución de las alpacas según los porcentajes de reducción de la ovoposición de nematodos gastrointestinales postratamiento con ivermectina, según nivel de infección, Puno-Perú-2009.

		Ni	Total					
% Reducción ovoposición		Leve		oderada	Alta		Total	
	N	%	N	%	n	%	N	%
>98	6	30.00	5	25.00	10	50.00	21	35.00
90 – 98	5	25.00	5	25.00	3	15.00	13	21.67
80 – 89	4	20.00	8	40.00	5	25.00	17	28.33
< 80	5	25.00	2	10.00	2	10.00	9	15.00
Total		100.00	20	100.00	20	20.00	60	100.00

Figura 2.- Porcentaje de reducción de ovoposición de nematodos gastrointestinales postratamiento con ivermectina en alpaca – 2009.

En el cuadro y figura 2, se muestra que hubo un 25.0%, 10.0% y 10.0% para las infecciones leves, moderada y alta respectivamente con porcentajes de reducción de la ovoposición inferiores al 80%, el cual se considera como resistencia alta, de los cuales casi la mitad tenía una reducción de la ovoposición para los niveles de infección moderada a alta. La mediana resistencia antihelmíntica (considerado entre el 80 y 89%) frente a la ivermectina detectada en las alpacas que se sometieron a estudio, muestra un total de 28.33%, esta resistencia se concentró principalmente en el género Estrongylus, Nematodirus sp., y L. chavezi; esto concuerda con observaciones previas hechas en Chile (Moenen-Locoz 1998, Sievers y Fuentealba 2003). En la primera prueba de eficacia de la ivermectina realizada en bovinos en Chile (Robles, 1983), se detectó que Nematodirus sp seguía ovoponiendo después del tratamiento, y es probable que esa resistencia innata de dicho género se haya magnificado en los últimos decenios por el extensivo y repetitivo uso de la ivermectina en rumiantes, es menester indicar que en las alpacas que recibieron tratamiento antihelmíntico con ivermectinas un 35.0% de los animales mostro alta sensibilidad de los nematodos gastrointestinales a las ivermectinas, porcentaje relativamente muy bajo, de ello deducimos que el parasitismo es la principal causa de pérdidas económicas en producción de rumiantes (Prichard, et al.,1994). Si bien se han desarrollado diferentes estrategias para contrarrestar el efecto nocivo de los parásitos helmintos (medidas de manejo, control biológico, selección de animales resistentes, etc.), el control químico continúa siendo una herramienta fundamental en la lucha contra las parasitosis. Además, la intensificación de los sistemas de producción animal ha dado lugar a una dependencia casi exclusiva de la quimioterapia, siendo hoy el desarrollo de resistencia de diferentes géneros parasitarios a la acción de diversos grupos de sustancias químicas, siendo una seria amenaza para los sistemas de producción animal.

La secuencia de eventos por la cual se alcanza el desarrollo de resistencia antihelmíntica podría deberse al material genético que confiere resistencia, existe en una muy baja frecuencia en una población parasitaria (estado de pre-existencia), siendo la población mayoritariamente susceptible a la dosis recomendada de un fármaco antihelmíntico determinado, tratamientos sucesivos con la misma droga ó grupo de drogas con un mismo mecanismo de acción, matan los genotipos susceptibles, sobreviviendo al tratamiento los nematodos resistentes que poseen genotipos homocigota (RR) y heterocigota (RS); los pocos helmintos que sobreviven tras la sucesión de tratamientos, están molecularmente capacitados para resistir el efecto de ese tipo de fármacos, lo cual es heredado de generación en generación; la selectiva desaparición de los genotipos susceptibles lleva a que las próximas generaciones sean descendencia de la minoritaria población resistente, lo cual origina el desarrollo de resistencia a ese tipo de fármacos, estando de acuerdo con lo que menciona Pratt, (1990).

CONCLUSIONES

- ♦ Existe resistencia antihelmíntica para los *Estrongylus*, seguido de los *Nematodirus* sp. y *L.chavezi* frente a la ivermectina, para los niveles de infección leve moderada y alta en machos y hembras.
- ♦ El *L. chavezi* mostró alta resistencia a la ivermectina para los niveles de infección leve en machos con 79.62%, seguido de los animales con infección moderada en machos con 89.08%, y animales con niveles de infección leve para las hembras con 82.23%.

- ♦ Las alpacas machos, son los que muestran mayor resistencia antihelmíntica a las ivermectinas, con 88.78%, siendo los más resistentes los *Estrongylus* con 78.66% seguido de *L. chavezi* con 79.62%.
- ◆ La reducción de ovoposicion inferior al 80% (resistencia alta), fue de 25%, 10% y 10% para los niveles de infección leve, moderada, y alta respectivamente, la resistencia mediana de los nematodos gastrointestinales fue de 28.33% para los *Estrongylus*, *Nematodirus* sp y L. chavezi.

REFERENCIA BIBLIOGRAFICA

- Anziani, O.; Zimmermann, G.; Guglielmone, A.; Vásquez, R.; V Suárez, V. (2001). Avermectin resistance in *Cooperia pectinata* in cattle in Argentina. Vet. Rec. 149:58-59.
- Armour, J. (1989). The influence of host immunity on the epidemiology of trichostrongyle infections in cattle. Vet Parasitol, 32: 5-19
- Boch, J.; Supperer, R. (1977). Parasitología en Medicina Veterinaria. 1ra ed, Ed. Hemisferio Sur. Bs. As, 627p.
- Coles, G.; Bauer, C.; Borgsteede, F.; Klei, T.; Taylor, M.; Waller, P. (1992). World Association for the Advancement of Veterinary Parasitology (WAAVP) methods for detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 44:35-44.
- Coles, G.; Giordano, D.; Trtschler, J., (1994), Efficacy of moxidectin against nematodes in naturally infected sheep. Vet. Rec., 135: 38-39.
- Craven, J.; Bjorn, E.; Barnes, S.; Henriksen, P.; Nansen. D. (1999). A comparison of in vitro tests and a faecal egg count reduction test in detecting anthelmintic resistance in horse strongyles. Vet Parasitol 85, 49-59.
- Chávez, C.; Guerrero, C.; Alva, J.; Guerrero, J. (1967). Parasitismo gastrointestinal en alpacas. Rev FMV-UNMSM, 21:9.
- Chávez, F.; Condori, S. (1990). Evaluación parasitaria de ovinos, alpacas y vacunos en diez comunidades campesinas del ámbito de la Microrregión Puno- Pichacani. Tesis Médico Veterinario y Zootecnista, FMVZ-UNA-Puno.
- Dunn, A. (1983). Helmintología Veterinaria. 2da ed, Ed. El Manual Moderno, México, 1832 pp.
- FAO, (2003). Resistencia a los antiparasitarios. Estado actual con énfasis en América Latina. Boletín 157. Roma.
- Fie,l C.; Saumel, P.; Estefan, E.; Rodríguez, G.; Salaberry, E. (2000). Resistencia de los nematodos Trichostrongylideos Cooperia y Trichostrongylus– a tratamientos con avermectinas en bovinos de la Pampa Húmeda, Argentina. Rev Med et 81, 310-315.
- Holmes, P.; Coop, R. (1994). Work shop summary: Pathophysiology of gastrointestinal parasites. Vet Parasitol, 54: 299-303. Jackson, F. (1993). Anthelmintic resistance the state of play. Br Vet J 149, 123-138.
- Leguía, G.; Casas, E. (1999). Enfermedades Parasitarias y Atlas Parasitológico de Camélidos Sudamericanos. 1ra ed, Edit. del Mar, Lima, 190pp.
- Mamani, Ch. (1989). Evaluación parasitaria el alpacas (*Lama pacos*) de la Comunidad de Chichillapi-Provincia de Chucuito-Puno. Tesis de Médico Veterinario y Zootecnista, FMVZ-UNA. Puno Perú.
- Melo, M. (1997). Sistemas de control y manejo sanitario de las alpacas y llamas en la región andina del sur Peruano. Rev FMVZ-UNA, Puno, 1:54-59.
- Moenen-Locoz, A. (1998). Estudio comparativo de la efectividad de cinco productos comerciales que contienen Ivermectina frente a parásitos gastrointestinales del bovino. Tesis, M.V., Universidad Austral de Chile, Facultad de Ciencias Veterinarias, Valdivia Chile.
- Morales, G.; Pino, L. (1977). Manual de diagnostic helmintologico en ruminates. Editorial Colegio de Medicos Veterinarios del Estado de Arugua Maracay. 100p
- Pratt, W. (1990). Drug resistance. En: Principles of Drug Action. Third edition. pág. 565-637. 1990.
- Prichard, R.; Hall, C.; Kelly, J.; Martin, C.; Donald, D. (1980), The problem of anthelmintic resistance in nematodes. Aust. Vet. J., 56: 239-251.
- Robles, S. (1983). Efecto del fármaco Ivermectina (Ivomec) sobre la eliminación de huevos de parásitos gastrointestinales en las fecas de terneros en sus primeros meses de vida. Tesis, M.V., Universidad Austral de Chile, Facultad de Ciencias Veterinarias, Valdivia, Chile.
- Romero, J.; Boero, C.; Vásquez, R.; Aristizábal, M.; Baldo, A. (1998). Estudio de la resistencia a antihelmínticos en majadas de la mesopotamia Argentina. Rev Med Vet 70, 342-346.
- Sangster, N. (1999). Pharmacology of anthelmintic resistance in cyathostomes: will it occur whith the avermectin/milbemycins? Vet Parasitol 85, 189-204.
- Sievers, G.; Fuentealba, C. (2003). Comparación de la efectividad antihelmíntica de seis productos comerciales que contienen lactonas macrocíclicas frente a nemátodos gastrointestinales del bovino. *Arch Med Vet* 35, 81-88.
- SENAMHI. (2004). "Servicio Nacional de Metereología y Hidrografía" Agencia Puno.
- Valenzuela, P. (1992). Neosporosis en bovinos y caninos Neosporosis in cattle and dogs Programa de Magíster en Ciencias Veterinarias. Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile. pazval70@yahoo.com.mx.
- Vermunt, J.; West, W.; Pomroy, E. (1995). Multiple resistances to ivermectin and oxfendazole in *Cooperia* species of cattle in New Zealand. *Vet Rec* 143, 443-446.

ANEXO

